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INTRODUCTION
 
 The title of this laboratory experiment is misleading; the procedure we are about to employ is a 
very poor one for the determination of k of unknown materials.  However, the experiment is an 
extremely useful introduction to unsteady-state heat transfer and the lessons we learn here are di-
rectly applicable to other, practical heat transfer situations.  This procedure is carried out with 
the apparatus shown in Figure 1.  The sample or circulation chamber is on the left, and the 
heated bath on the right.  The control unit for the electric immersion heater is mounted on the 
front (top) of the heated bath; the pump motor can be seen immediately behind it. 
 
 
Figure 1.  Thermal conductivity apparatus, with sample chamber (left), hot water bath, immer-

sion heater control, and pump.  One of the polycarbonate samples is standing on end in the mid-
dle. 
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We are going to examine the behavior of the cylindrical samples; several of these are 6 inches 
long and 1 inch in diameter.  The polycarbonate and phosphor bronze specimens are pictured be-
low in Figure 2;  you can easily identify the mounting stems and the leads from the copper-
constantan thermocouples, which are located on the sample centerline. 
 

                                                                  
 
Figure 2.  Polycarbonate and phosphor bronze (cylinder “F”) test specimens. 
 
 
Our procedure is very simple; the thermocouple leads are connected to a recording device and at 
t=0, the sample is plunged into the heated water in the test chamber. 
 
 
 
AN ANALYTIC SOLUTION
 
 Consider a solid cylindrical billet, at some uniform initial temperature (say 3 °C); at t=0 this 
sample is plunged into a heated bath maintained at about 65 to 70 °C.  By recording the emf pro-
duced by a copper-constantan thermocouple on the cylinder centerline, we can obtain a record of 
the approach of the sample's temperature to that of the heated bath.  Clearly in the interior of the 
solid sample, heat transfer occurs solely by conduction; therefore, the appropriate form of equa-
tion B.9-2 (page 850 in Transport Phenomena) is: 
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If the cylinder is infinitely long, or practically speaking, if L/D is sufficiently large, then axial 
conduction can be neglected.  You should carefully consider the circumstances under which this 
is a reasonable assumption.  How might you go about assessing this simplification, quantita-
tively?  It proves useful to employ a dimensionless temperature, defined by: 
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where Tb is the temperature of the heated bath and Ti is the initial temperature of the specimen.  
By this definition θ=1 initially, and θ→0 as t→∞.   We introduce θ into eq. (1), and divide by 
ρCp.  The result is: 
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We now illustrate a method by which the analytic solution of eq. (3) can be determined; this 
technique is often referred to as the product method, or separation of variables.  We postulate 
that a solution can be found of the form: 
 
      )()( tgrf=θ ,                                                                                      (4) 
 
where f is a function solely of r and g is a function solely of t.  Consider the consequences of in-
troducing (4) into (3): 
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Prove that this is correct.  Divide eq. (5) by the product, f⋅g.  The result is: 
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Note that the left-hand side is a function only of time.  The right-hand side is a function only of 
radial position.  Yet, they are equal.  Obviously, both sides of (6) must be equal to a constant, 
which we write as -λ2.  The rationale for this choice will become apparent momentarily.  It is 
evident that we now have two ordinary differential equations: 
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Show that the solution to (7a) is:   .  You should also recognize that (7b) is a 
form of Bessel's differential equation; see Mickley, Sherwood, and Reed, 

)exp( 2
1 tCg αλ−=

Applied Mathematics 
in Chemical Engineering, McGraw-Hill, 1957).  The solution for (7b) has the form: 
 
        )()( 00 rBYrAJf λλ += ,  
 
where J0 and Y0 are zero-order Bessel functions of the first and second kind, respectively.  Ac-
cording to our hypothesis, 
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You may wish to verify that (8) is in fact a solution for eq. (3).  We have two boundary condi-
tions that must be satisfied; first, at r=0, θ must be finite.  Since Y0(0)=-∞ , we set B=0.  Consider 
the boundary condition to be applied at r=R; if the cylinder surface attains the bath temperature 
very rapidly, then at r=R, θ=0.  Therefore, J0(λR)=0.  J0 has infinitely many zeros, irregularly 
spaced.  We have no reason to believe that at fixed time and radial position, any single one of the 
infinite number of possible values of λ would result in solution.  Therefore, we use superposition 
to rewrite (8): 
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Whether or not the boundary condition  at r=R is appropriate depends upon the relative rates of 
heat transfer on the two sides of the fluid-solid interface.  If the cylindrical sample has a (rela-
tively) large thermal conductivity, then heat flow to the interior will occur rapidly and preclude 
use of this boundary condition.  In fact, this will be the general situation with the metallic sam-
ples we examine.  For these cases, a Robin's type boundary condition must be employed at r=R 
where the thermal energy fluxes are equated on either side of the interface.  We accomplish this 
by using Fourier's law and Newton's "law" of cooling, 
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After introducing our dimensionless temperature and performing the indicated differentiation 
(term-by-term), this boundary condition can be rewritten as: 
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This transcendental equation occurs frequently in mathematical physics; roots are compiled in 
many places, including Carslaw and Jaeger (Conduction of Heat in Solids) in Appendix IV, Ta-
ble III.  Look carefully at the quotient, hR/k.  It is not the Nusselt number; it is the Biot modulus.  
Make sure you know the difference.  Now, suppose that  hR/k=1.5; in this case the first six roots 
for λnR are: 
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                           1.4569,  4.1902, 7.2233, 10.3188, 13.4353, and 16.5612. 
 
 The use of (10) as a boundary condition poses a serious problem; we have no a priori means of 
determining h.  Thus, we have introduced another unknown parameter into an experimental pro-
cedure that was intended to provide a means for estimating k (or the thermal diffusivity, α).  The 
deficiency of this experiment is now clear:  The determination of thermal conductivity  will only 
be possible if the main resistance to heat transfer is in the material—not in the fluid phase.  Be-
fore we attempt to resolve this difficulty, we need to finish our analytic solution.  This means 
choosing values for the leading coefficients (the An’s) that cause our series to converge to the de-
sired solution.  Note that we have applied two boundary conditions--we now employ the initial 
condition:  For all time up to t=0, the sample temperature is a uniform, Ti, such that θ=1.  There-
fore, we rewrite (9) as 
 
              .                                                                                (12) ∑= )(1 0 rJA nn λ
 
We now take advantage of the orthogonality of Bessel functions; in particular, we're going to 
make use of the following type of relationship: 
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Thus, in principle, we multiply both sides of (12) by rJ0(λnr)dr  and integrate from 0 to R to de-
termine the unknown coefficients.  This is illustrated in Powers (1979) on pages 220 and 221.  
Please make note of the fact that (for n=m) eq. (13) will result in  
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only for the case in which theλn’s  are the roots of  0)(0 =RJ nλ ; i.e., for the non-metal samples.  
Our situation with the metallic billets is more complicated since the separation constants have 
come from the Robin's type boundary condition, eq. (11).  It is not a straightforward exercise to 
show: 
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 One other important question remains:  How fast does the series, eq. (9), converge?  If more than 
3 or 4 terms are required, the analytic solution will not be very useful.  Note that if α and/or t are 
large, the exponential factor will certainly be dominant.  Let's explore series convergence for a 
specific case; consider the phosphor bronze cylinder (sample F): 
 
                             

5 
©Larry A. Glasgow 
December 2009       
 



                             PHOSPHOR BRONZE SPECIMEN
                                L=15.24 cm               D=2.54 cm 
                               ρ=8.86 g/cm3           Cp   =0.09 cal/(g °C) 
                                k=0.165 cal/(cm2 s °C)/cm 
                                α=0.2074 cm2/s 
 

Now we take 15.0=
k

hR ;  we'll determine whether or not this is an appropriate choice later.  Us-

ing tabulated roots for eq. (11), we find that: 
 
         n                        λn                λnR                An     
   ===================================== 
        1                         0.42            0.5376             1.0356 
        2                         3.05            3.8706           -0.0492 
        3                         5.54            7.0369           +0.0202 
        4                         8.02          10.1882                 ?  
        5                        10.50        13.3349                 ? 
        6                        12.98        16.4797                 ? 
  
You may want to try to complete this table as an exercise.  Now look at the centerline tempera-
ture of the phosphor bronze specimen 5 s after immersion in the heated bath: 
 
 First term of infinite series:     0.8625 
 Second term:       -3.221x10-6

 
This is highly desirable behavior in an infinite series solution! 
 
        
OBTAINING A NUMERICAL SOLUTION
 
 The limitations of the infinite series solution are apparent.  If t is small, many terms may be re-
quired for convergence.  Fortunately, we have a simple (yet powerful) technique that will allow 
us to arrive at a solution of the partial differential equation for the case in which the thermal dif-
fusivity is known.  Since we have already compiled the required information for phosphor 
bronze, we'll treat that case as our example.  Our starting point is eq. (1) and once again, we'll 
neglect axial conduction in the cylindrical sample. 
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Let the indices, i and j, represent radial position and time, respectively.  We now write a finite 
difference representation of this equation: 
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Notice how this equation allows us to compute the temperature on the new time-step row (j+1), 
using only known, old temperatures.  This is an explicit algorithm for solution of the partial dif-
ferential equation.  Please note that we cannot let the quotient, αΔt/(Δr)2, assume any arbitrary 
value.  This parameter must be kept smaller than 0.5 for numerical stability; see G. D. Smith, 
Numerical Solution of Partial Differential Equations for elaboration.  For purposes of our ex-
periment, I have divided the radius of the cylindrical billet into 50 radial segments, which means 
that Δr=0.0254 cm.  Accordingly, the index i will assume values from 1 and 51, inclusive.  A 
simple BASIC code was developed for this problem, and a listing is provided immediately below 
in Figure 3.  An executable version of the program will be made available to you. 
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 We're going to use this program to determine the "best" value for the heat transfer coefficient, h, 
by comparison with experimental data for the phosphor bronze cylinder.  You should be aware 
of the fact that when water is used for heating or cooling in agitated tanks, h typically is on the 
order of 50 to perhaps 3000 Btu/(hr ft2 °F).  In the cgs system (which is extremely appropriate 
for our experiment), this range of values corresponds to 0.0068 through 0.407 cal/(s cm2 °C).  In 
this experiment, experience has shown the the heat transfer coefficient is almost always between 
100 and 225 Btu/(hr ft2 °F).  We shall test this shortly, but we need to actually perform the ex-
periment. 
 
 
CARRYING OUT THE EXPERIMENT
 
 Begin with the phosphor bronze sample immersed in ice water, allowing it to attain a uniform 
temperature of around 3 °C.  This period of equilibration should be about 5 minutes.  See that the 
heated bath is at a temperature of at least 65 °C.  Using the acrylic plastic cover to secure the bil-
let, plunge the specimen into the heated bath at t=0; make sure that the recording device (Keith-
ley 2700) is started simultaneously.  We obtain a record of centerline temperature as a function 
of time (actually thermocouple emf).  Note that the phosphor bronze sample will come to equi-
librium within  ∼100 s of immersion.  Repeat this process for each of the metallic samples; de-
pending upon your time constraints, you may want to run each sample twice. 
 
 The nonmetal cylinders present some different challenges.  For example, consider the acetal 
polymer cylinder (identified by the letter, "B"); according to Perry's Chemical Engineers' Hand-
book the density, heat capacity, and thermal conductivity are: 
 
         ρ=1.425 g/cm3,  Cp=0.35 cal/(g °C) , k=0.000537 cal/(s cm2 °C) . 
 
As a result, the thermal diffusivity,  α, of acetal is only about 0.00108 cm2/s.  Compare this to 
the thermal diffusivity for phosphor bronze cited previously.  The conduction of thermal energy 
in the acetal polymer specimen is going to be very much slower.  We need to take this into ac-
count when cooling or heating the nonmetal samples.  Here is an abbreviated table to help you 
get a feel for the range of thermal diffusivities: 
 
         Material                        Thermal diffusivity, α (cm2/s) 
            silver                                               1.71 
            copper                                             1.14 
            aluminum                                       0.86   (0.835 according to Perry's) 
            brass                                                0.33 
            cast iron                                          0.12 
            monel                                              0.053 
            stainless steel (304)                      0.040 
            glass                                               0.0058 
            wood (spruce, across grain)          0.0024 
            acrylic plastic                                 0.0012 
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 We're employing copper-constantan thermocouples, so we need to know how to convert emf to 
temperature.  Consulting Lange's (Handbook of Chemistry), we find the calibration table for 
copper-constantan thermocouples with the reference or "cold" junction maintained at 0 ºC: 
 
  Temperature, °C             TC output, mV
         0                                       0.000 
        10                                      0.389 
        20                                      0.787 
        30                                      1.194 
        40                                      1.610 
        50                                      2.035 
        60                                      2.467 
        70                                      2.908 
 
How well can these data be represented by a straight line?  You can appreciate why it is so im-
portant for us to monitor both the ice water and heated bath temperatures with accurate ther-
mometers. 
 
 What do the data look like?  A composite of three experimental runs with the phosphor bronze 
cylinder appears below as Figure 4.  Note that the centerline temperature does not begin to in-
crease instantaneously.  You will also observe that the bath temperature has nearly been attained 
by the center of the sample at about 70 s following immersion.  We can expect some of the non-
metals to react much more slowly!  In fact, for these cases (acrylic or Plexiglas, acetal, polyeth-
ylene, polycarbonate) we can make immediate use of Figure 12.1-2 on page 378 of Transport 
Phenomena or Figure 7 in the Appendix.  
 
 
EXPERIMENTAL STRATEGY
 
 Begin the experiment with the phosphor bronze sample; you should obtain data similar to those 
shown in Figure 4.  Our plan is to use these data (in conjunction with the numerical solution of 
the model) to determine the "best" value of the heat transfer coefficient.  Figure 5 illustrates 
model computations for two values of h: 100 and 250 Btu/(hr ft2 °F).  Compare these curves with 
the data appearing in Figure 4.  It is immediately apparent that the most suitable value for the 
heat transfer coefficient is approximately 125 to 150 Btu/(hr ft2 °F); in the cgs system, this range 
corresponds to 0.0169 to 0.0203 cal/(s cm2 °C).   
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Figure 4.  Experimental data obtained with the phosphor bronze cylinder.  The initial tempera-
ture was 3°C and the final (heated bath) temperature was 67°C.  Notice that 90% of the tempera-
ture change is accomplished in just 50 s. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Comparison of data for phosphor bronze sample with model computations using two 
values of h: 100 and 250 Btu/(hr ft2 °F).  The markers for the experimental data are triangles. 
 
 Now that you have a reliable value for h, can you think of a procedure that would allow you to 
estimate the thermal diffusivities for "unknown" samples?  Examine eq. (9).  Suppose the infinite 
series solution converges so rapidly that only the first term had to be retained; under those cir-
cumstances, 
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Consequently, 
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In principle, a plot of lnθ as a function of time, t, should yield slope and intercept;  for the 
phosphor bronze case illustrated in Figure 6 below, you'll note that the slope is about -0.0365 
(verify!) and the intercept is about 1.31.  Make absolutely certain that you are comfortable with 
slope determination on both logarithmic and semi-logarithmic plots.  Let's turn back to eq. (11) 
and arbitrarily select hR/k=1; according to the appropriate table in Carslaw and Jaeger, 
λ1R=1.2558.  Therefore,  α≅0.0365/(0.9888)2=0.037 cm2/s.  Now we combine equations (11) 
and (15) to produce: 
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This does not yield a physically realizable value for the thermal conductivity, k.  Our selection of 
the parametric value,  hR/k=1 was a poor one!  Try 0.15 instead.  What value do you obtain (for 
k) this time?  You should get about 0.114 cal/(cm s °C), which is about 30% too low.  It is obvi-
ous that this method is greatly dependent upon construction of the straight line in Figure 6. 
 We need a better procedure for the determination of thermal conductivity; fortunately, the nu-
merical solution of the partial differential equation provides just that.  Use the program (with 
your value of the heat transfer coeffcient) to determine the thermal diffusivity, α, for several of 
the "unknown" specimens.  Do this by adjusting the value of the diffusivity until the computed 
temperature history closely approximates your experimental results.  What are the major factors 
affecting your level of confidence in the resulting estimates for k?  Could you devise a better ex-
perimental procedure for determination of thermal conductivity of unknown materials?  How 
would your test procedure vary from the one employed in this experiment? 
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Figure 6.  Dimen-

sionless temperature as a function of time for the phosphor bronze specimen.  Note that the cen-
tral portion can be approximately represented with a straight line. 
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APPENDIX 
 
Solution for the case in which the surface of the cylinder instantaneously attains the bath tem-
perature. 

 
Figure 7.  Temperature distributions for transient conduction in a long cylinder.  The initial tem-
perature of the material is Ti; at t=0, the outer surface (r=R) is instantaneously heated to Tb.   The 
curves represent values of αt/R2 ranging from 0.005 to 0.60 and the center of the cylinder corre-
sponds to the left-hand side of the figure.  The data appearing in this figure were computed nu-
merically. 
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